Penalty-free sparse PCA

نویسنده

  • Kohei Adachi
چکیده

A drawback of the sparse principal component analysis (PCA) procedures using penalty functions is that the number of zeros in the matrix of component loadings as a whole cannot be specified in advance. We thus propose a new sparse PCA procedure in which the least squares PCA loss function is minimized subject to a pre-specified number of zeros in the loading matrix. The procedure is called unpenalized sparse matrix PCA (USMPCA), as it does not use a penalty function and obtains component loadings matrix-wise, i.e., simultaneously rather than sequentially. The key point of USMPCA is to use the fact that the PCA loss function can be decomposed into sum of two terms, one of them irrelevant to loadings, and another one being a function easily minimized under the considered cardinality constraint. This decomposition makes it possible to construct an efficient alternate least squares algorithm for USMPCA. Another useful feature is that the PC score matrix is column-orthonormal, which helps to define naturally the percentage of explained variance by the sparse PCs. USMPCA is illustrated with real data examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse variable noisy PCA using l0 penalty

Sparse principal component analysis combines the idea of sparsity with principal component analysis (PCA). There are two kinds of sparse PCA; sparse loading PCA (slPCA) which keeps all the variables but zeroes out some of their loadings; and sparse variable PCA (svPCA) which removes whole variables by simultaneously zeroing out all the loadings on some variables. In this paper we propose a mode...

متن کامل

On General Adaptive Sparse Principal Component Analysis

The method of sparse principal component analysis (S-PCA) proposed by Zou, Hastie, and Tibshirani (2006) is an attractive approach to obtain sparse loadings in principal component analysis (PCA). S-PCA was motivated by reformulating PCA as a least-squares problem so that a lasso penalty on the loading coefficients can be applied. In this article, we propose new estimates to improve S-PCA in the...

متن کامل

Sparse loading noisy PCA using an l0 penalty

In this paper we present a novel model based sparse principal component analysis method based on the l0 penalty. We develop an estimation method based on the generalized EM algorithm and iterative hard thresholding and an associated model selection method based on Bayesian information criterion (BIC). The method is compared to a previous sparse PCA method using both simulated data and DNA micro...

متن کامل

A Fast Algorithm for Sparse PCA and a New Sparsity Control Criteria

Sparse principal component analysis (PCA) imposes extra constraints or penalty terms to the standard PCA to achieve sparsity. In this paper, we first introduce an efficient algorithm for finding a single sparse principal component (PC) with a specified cardinality. Experiments on synthetic data, randomly generated data and real-world datasets show that our algorithm is very fast, especially on ...

متن کامل

An algorithm for sparse PCA based on a new sparsity control criterion

Sparse principal component analysis (PCA) imposes extra constraints or penalty terms to the standard PCA to achieve sparsity. In this paper, we first introduce an efficient algorithm for finding a single sparse principal component (PC) with a specified cardinality. Experiments on synthetic data, randomly generated data and real-world data sets show that our algorithm is very fast, especially on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014